Towards a hybrid parallelization of lattice Boltzmann methods
نویسندگان
چکیده
منابع مشابه
Hybrid Parallelization Techniques for Lattice Boltzmann Free Surface Flows
In the following, we will present an algorithm to perform adaptive free surface simulations with the lattice Boltzmann method (LBM) on machines with shared and distributed memory architectures. Performance results for different test cases and architectures will be given. The algorithm for parallelization yields a high performance, and can be combined with the adaptive LBM simulations. Moreover,...
متن کاملEntropic Lattice Boltzmann Methods
We present a general methodology for constructing lattice Boltzmann models of hydrodynamics with certain desired features of statistical physics and kinetic theory. We show how a methodology of linear programming theory, known as Fourier-Motzkin elimination, provides an important tool for visualizing the state space of lattice Boltzmann algorithms that conserve a given set of moments of the dis...
متن کاملEvaluation of two lattice Boltzmann methods for fluid flow simulation in a stirred tank
In the present study, commonly used weakly compressible lattice Boltzmann method and Guo incompressible lattice Boltzmann method have been used to simulate fluid flow in a stirred tank. For this purpose a 3D Parallel code has been developed in the framework of the lattice Boltzmann method. This program has been used for simulation of flow at different geometries such as 2D channel fluid flow an...
متن کاملStability Analysis of Lattice Boltzmann Methods
The lattice Boltzmann equation describes the evolution of the velocity distribution function on a lattice in a manner that macroscopic fluid dynamical behavior is recovered. Although the equation is a derivative of lattice gas automata, it may be interpreted as a Lagrangian finite-difference method for the numerical simulation of the discrete-velocity Boltzmann equation that makes use of a BGK ...
متن کاملConvergence of Convective-Diffusive Lattice Boltzmann Methods
Lattice Boltzmann methods are numerical schemes derived as a kinetic approximation of an underlying lattice gas. A numerical convergence theory for nonlinear convective-diffusive lattice Boltzmann methods is established. Convergence, consistency, and stability are defined through truncated Hilbert expansions. In this setting it is shown that consistency and stability imply convergence. Monotone...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2009
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2009.04.001